

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):

DATE: (日期):2015-12-12

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GT 25V330μF(φ8X12)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPI	JER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
郭梦玉	王国华		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

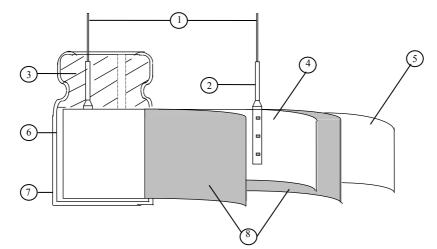
		SPECIFICAT	ALTERNATION HISTORY RECORDS				
Rev.	Date	GT SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
Kev.	Date	Widik	1 age	Contents	T urpose	Dianci	Approver

	ELECTROLYTICMAN YUE ELECTRONICSCAPACITORCOMPANY LIMITEDSPECIFICATIONGT SERIES					CAPACITOR SPECIFICATION				S	AMX	ON		
Tab	le 1 Product Dimen	sions a	und Ch	aracteristic	: S						Unit: m	ım		
	Safety vent for $\geq \Phi$ 6.3		5 min	$d\pm 0.03$	5 -		F±0.5	β¢ *lfitis	20:α=1.5; L2 2D<20:β=0.5 flat rubber, urface.	; ΦD≥20	: β=1.0	from th	ie flat r	ubber
N o.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA_rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifeti me (Hrs)	Dir D×L	mension (mm) F	n ¢d	Sleev
1	EGT337M1EF12RR**P	25	330	-20%~+20%	-40~105	0.14	82	640	0.130	7000	8X12	3.5	0.5	PET
0.	Part No.	(Vdc)	(µF)		range(℃)	(120Hz, 20℃)	Current (µA,2min)	Current at 105°C 100KHz (mA rms)	at 20°C 100kHz (Ωmax)	lifeti me (Hrs)	D×L	(mm) F	фd	

Version	01	Page	2
v ersten	01	1 480	

1. Application		Sheet
	n	4
2. Part Numb		4
3. Constructio		5
4. Characteris	stics	5~10
4.1 Rated voltage &	k Surge voltage	5~10
4.2 Capacitance (T	olerance)	
4.3 Leakage curren		
4.4 tan δ		
4.5 Terminal streng	gth	
4.6 Temperature cl	haracteristic	
4.7 Load life test		
4.8 Shelf life tes	t	
4.9 Surge test		
4.10 Vibration		
4.11 Solderabilit	ty test	
4.12 Resistance		
4.13 Change of t	-	
4.14 Damp heat 1	test	
4.15 Vent test	nissible (ripple current)	
	ronment-related Substances to be Controlled ('Controlled	ed 11
	pplication Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---


EGS 10.5 M TOL TH CASE GUE TYPE SAME OF PRODUCT IN BLEEV PRODUCT IN	2.													
BERKED CADACTTANCE TOL VOLTAGE CADE SIZE TTPP POMULT LINE SLEEP SAMXON Poduct Line SLEEP Series 0.1 104 ±5 J 2 000 2 1 104 ±5 J 2 000 2 1 104 ±5 J 2 000 2 1 104 10 10 104 10 <t< td=""><td>1</td><td></td><td></td><td>56</td><td>5 [7</td><td>1</td><td>89</td><td>Ľ</td><td>10 11</td><td>12</td><td></td><td>14</td><td>1516</td><td>17</td></t<>	1			56	5 [7	1	89	Ľ	10 11	12		14	1516	17
Series Berger			_	0 5		-			D 1	1	TYP		SA	P
EAM 0.1 104 ±5 J 22 000 How matches and mathes and match			0417		Ĩ		VOLINGE				Ĩ			
EXP 0.1 104 ±.5 J 2.6 OCE 3.3 E Relatibuk RT Perintentiation only ESS 0.22 224 ±10 K 6.3 0.1 6.3 0.1 100 100 6.3 0.1 100 100 6.3 0.1 100 100 6.3 0.1 100	Γ		Cap(MFD)	Code	Tolerance (%)	Code					Feature (Code	SAMXON Product L	Line
ESS EXC EXC EXC EXC EXC EXC EXC EXC EXC EXC		EKF	0.1	104	±5	J.			3	B	Radial bulk	RR		×
EXC 0.33 334 ± 15 L 8 0K 23 F 20mm Pitch TT EXM 0.47 474 ± 15 L 12.5 18 12.5 1 20mm Pitch TT EXF 1 105 ± 20 M 220 10 14 4 4 36mm Pitch TV EXF 1 105 ± 20 M 220 10 14 4 4 36mm Pitch TV 36mm Pitch TV 50mm Pitch TC 10 106 20 10 165 7 50mm Pitch TC Load Cut & Form Exer 10 106 20 C 73 110 36 9 CE=Type CE 10 106 20 C 73 110 36 6 116 10 10 20 77 110 10 10 10 10 10 10 10 10 10 10		EKS EGS	0.22	224	+10	к				C D	Ammo Tap	ng		
EXAM 0.47 474 ±15 L 12.6 18 12.5 1 2.5mm Pith TU EGT 1 105 ±20 M 20 10 14 7 75 20 A 50 11 4 4 6 6 6 6 74 10 5 6 6 74 10 5 6 6 6 6 74 10 5 6 6 6 6 6 6		EKG	0.33	334			8	0K	8	F	2.0mm Pitch	тт		<i>.</i>
EST EGC EGC EGC EGC EGC EGC EGC EGC EGC EGC		EZM EZS	0.47	474	±15	L	12.5	1B	13	J	2.5mm Pitch	τu		
EXC 2.2 2.2 2.2 2.2 2.25 10		ESF	1	105	±20	м	20	1D	14		3.5mm Pitch	тν	Sleeve Material	Code
Loc 32 13 16.5 6 7<		EGK			+ 30	N			16 16.5	К 7	5.0mm Pitch	тс		
ERR. BERT 4.7 477 475 -20 0 A 50 50 1H 33 40 50 CE-Type CE BERT 10 106 -20 0 A 50 1H 33 40 CE-Type CE BERT 22 228 -20 0 C 633 1J 422 4 40 HE-Type CE BERT 22 228 -200 X 80 1K 685 1 BERA 33 388 -200 X 80 1K 800 8 BERA 22 228 -200 X 805 1R 800 8 BERA 47 478 -200 X 805 1R 100 20 5 EH-Type FD-Type FD BERA 100 107 -10 B 1200 220 5 EH-Type EH BERA 330 337 -10 200 220 13		EGC							18.5 20	8 M	Lead Cut & I	Form		
ERG EFFA ENH 33 336 +40 x 75 1T 63.5 T EFFA ENH 47 476 200 x 85 117 63.5 7 ENH 47 476 200 S 85 118 80.5 18 ENH 47 476 200 S 85 118 80.5 18 ERW 100 107 -10 B 120 20 5 56 56 ELP 230 337 -10 V 150 22 7.7 70 7 77 70 7 77 70 7 77 70 7 77 70 7 77 77 70 7 70 7 70 7 70 7 7 7 70 7 7 70 7 7 7 7 7 7 7 7 7 7 7 7		ERF			-40	w	40	1G	22 25	N O				
ERG EFFA ENH 33 336 +40 x 75 1T 63.5 T EFFA ENH 47 476 200 x 85 117 63.5 7 ENH 47 476 200 S 85 118 80.5 18 ENH 47 476 200 S 85 118 80.5 18 ERW 100 107 -10 B 120 20 5 56 56 ELP 230 337 -10 V 150 22 7.7 70 7 77 70 7 77 70 7 77 70 7 77 70 7 77 77 70 7 70 7 70 7 70 7 7 7 70 7 7 70 7 7 7 7 7 7 7 7 7 7 7 7		ERT			-20 0	A	50	1H	30 34 35	w		\vdash		
ERG EFFA ENH 33 336 +40 x 75 1T 63.5 T EFFA ENH 47 476 200 x 85 117 63.5 7 ENH 47 476 200 S 85 118 80.5 18 ENH 47 476 200 S 85 118 80.5 18 ERW 100 107 -10 B 120 20 5 56 56 ELP 230 337 -10 V 150 22 7.7 70 7 77 70 7 77 70 7 77 70 7 77 70 7 77 77 70 7 70 7 70 7 70 7 7 7 70 7 7 70 7 7 7 7 7 7 7 7 7 7 7 7		ERD	10	106	-20 +10	с	63	1J	40	R 4		\vdash		
ERC 33 336 +40 X 80 1K 76 U RD 1yps RD EFRA 47 476 -20 S 36 1R 80 1K 76 U RD 1yps RD ENP 47 476 -20 S 30 10 120 20 7 FD		ERA	22	226		~			51 63.5	S T		\vdash		
ENP ERM 47 476 +800 +800 S 90 19 100 1000 200 22 PD-1/ppe PD ERM 100 107 -10 B 100 2A 4.5 455 55 EH-Type EH EAP 220 227 -10 V 150 2Z 100 2A 4.5 455 55 EH-Type EH EAP 230 337 -100 V 150 2Z 11.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.5 100 22.0 22.0 22.8 5.5 F 22.00 22.8 23.0 30 30.3 32.7 23.0 30.0 33.0 32.7 23.0 30.0 33.0 32.7 23.0 30.0 33.0 32.7 30.0 30.0 33.1.5<		ERC	33	336		<u>^</u>			76	U 8		\vdash		
ERY ELP 100 107 -10 +20 B 120 200 50 54 54 54 54 54 Fer hype En EQP EQP 220 227 -10 +30 V 125 28 54 </td <td></td> <td>ENH</td> <td>47</td> <td>476</td> <td>+50</td> <td>s</td> <td>90</td> <td>19</td> <td>100 Len.(mm)</td> <td>Z Code</td> <td>FD-Type</td> <td>FD</td> <td></td> <td></td>		ENH	47	476	+50	s	90	19	100 Len.(mm)	Z Code	FD-Type	FD		
EAP EOP ENP ENP ENP ENP ENP ENP ENP ENP ENP EN		ERY	100	107	-10 0	в	120	20	5	05	EH-Type	EH		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EQP	220	227	-10 +20	v			7	77	PCB Term	nial		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ETP	330	337	-10	Q			11	11		sw		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		EKP	470	477		-			12	12 1B	Snap-in	sx		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EFP	2200	228	+50		220	2N		1C		sz		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EGP				E	250	2E		25 2J	Lug	SG		
EWX EWS EWS EWS EWS EWH EWH EWH EWH EWH EWH EWH EWS VNS VNS VNS VXS 3300 479 100000 -5 +20 G 310 315 2R 330 35.5 350 50 3E 350 3E 350 CB T5 VXS VNS VXS 100000 10T +20 R 3300 2U 100 1U T5 T6 VXS VXS 150000 15T 0 0 3360 2X 110 1M T6 VXS VXS 150000 15T 0 1 3855 2Y 1400 120 1N T6 VXS VXR 220000 22T +55 Z 420 2M 155 1E D6 VXR 330000 33T +55 D 550 25 200 2 D6 1000000 10M +55 D 550 25 200 2 D6 1000000 15M +10 H 6300 2.1 210 2M 2200000 22M +30 H 2200 220		EWU			-5 +15	F			31.5	30 3A		05	L	
EWNH EWB VSS 100000 10T 0 +20 R 330 2U 100 1 100 T5 VSS 150000 15T 0 0 3660 2X 110 1M T5 VKS 150000 15T 0 0 3855 2Y 140 10 T6 D5 VKM 220000 22T +55 1 4000 2G 155 16 D5 VRL 330000 33T +5 Z 450 2W 1661 16 D6 VRF 330000 33T +5 D 550 25 200 120 10 D6 1000000 10M +50 P 6600 26 215 2A 200 12 1360 12 D6		EWX			-5 +20	G			35.5	3E		06		
EWB VSS VNS VKS 100000 10T 0 2V 100 1M Screw T6 VKS 150000 15T 0 1 0 1 3360 2X 100 1M 120 1M VKS 150000 15T 0 1 3375 2Q 1300 1P 120 1M 100 1D 140 100 10 140 10 11 100 10 15 15 15 15 16 165 15 16 165 16 165 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10		EWH				R	330	2U	100	1Ľ		т5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		EWB VSS	100000	10T	0	0	360	2X	110 120	1M 1N	Screw	\vdash		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		VKS	150000	15T	0		385	2Y	130 140	1P 10		\vdash		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			220000	227	+5				160	1S		\vdash		
1000000 10M +20 50 25 1500000 15M +10 Y 1500000 15M 2200000 22M 3300000 33M			330000	33Т	+5				170	[1T]		D6		
+50 1 000 20 215 2A 1500000 15M +10 +10 - 630 2J 210 2M 2200000 22M +30 H - 630 2J 210 2M 3300000 33M - <			1000000	10M	+10		550	25	200	21				
2200000 22M 250 2R 3300000 33M 270 2T			1500000	15M	+50				215 210 220	2A 2M 2N				
			2200000	22M		н			240 250	2Q 2R				
			3300000	33M					260 270	28 2T				

Version	01		Page	4
---------	----	--	------	---

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

WV (V.DC) 6.3 10 16 25	35 50 63	100
SV (V.DC) 8 13 20 32	44 63 79	125
	50 400 420 450 .00 450 470 500	
<pre><condition> Measuring Frequency : 120Hz±12Hz</condition></pre>		
Measuring Voltage : Not more than 0.5 Measuring Temperature : $20\pm 2^{\circ}C$	5Vrms	
<criteria> Shall be within the specified capacitance toler</criteria>	rance.	
<condition> Connecting the capacitor with a protective r minutes, and then, measure Leakage Current. <criteria> Refer to Table 1</criteria></condition>	resistor $(1k \Omega \pm 10 \Omega)$ in serie	es for
<condition> See 4.2, Norm Capacitance, for measuring fre <criteria> Refer to Table 1</criteria></condition>	equency, voltage and temperatur	e.
 <condition> Tensile Strength of Terminals Fixed the capacitor, applied force to the tenseconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds. </condition> 	e terminal (1~4 mm from the rub r 90° to its original position with	ber) f
Diameter of lead wire (kgf)	(kgf)	
	, , ,	
Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds.	r 90° to its original posi ce N Bending for (kgf) .) 2.5 (0.25) 5 (0.51)	tion wit ce N)

Version	01		Page	6
---------	----	--	------	---

F

		<conditio< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></conditio<>								
		STI	EP Testi		rature(°C)			Time		
		1		20 ± 2				ch thermal e	1	
		2		-40(-25)	± 3	Time	to reac	ch thermal e	quilibriu	m
		3		20 ± 2	2	Time	to reac	ch thermal e	quilibriu	m
		4		105 ± 2 Time to reach thermal equilibrium		m				
		5	20 ± 2 Time to reach thermal equilibrium		m					
		<criteria></criteria>	>	all be within the limit of Item 4.4The leakage current measured shall						
						4.4The lo	eakage	current mea	asured sh	nall not
	Tommorotumo		8 times of i	-						
	Temperature characteristi				hin the lin	nit of Iter	n 4.4T	he leakage	current s	shall no
4.6	cs		the specifie			1 11 /	1	a 1	C (1 C 11	
		table.		mpedance	(z) ratio s	shall not	exceed	the value o	t the foll	owing
		Working V		6.3	10	16	25	35	50	63
		Z-25°C/2	Z+20℃	5	4	3	2	2	2	2
		Z-40°C/2	Z+20°C	10	8	6	4	3	3	3
		Working V	oltage (V)	100	160~22) 250~	350	400~420	450	
		Z-25°C/Z	- · · ·	2	3	4		6	15	_
		Z-40°C/2	Z+20°C							
			ance value > 1000 μ F, Add 0.5 per another 1000 μ F for Z-25/Z+20							
		-			Add 1.0) per anot	her 10	00 µ F for Z		
		For capacit Capacitance <conditio< td=""><td>e, tan δ , and</td><td></td><td>Add 1.0</td><td>) per anot</td><td>her 10</td><td>00 µ F for Z</td><td></td><td></td></conditio<>	e, tan δ , and		Add 1.0) per anot	her 10	00 µ F for Z		
		Capacitance <conditio< td=""><td>e, tan δ, and n></td><td>d impedar</td><td>Add 1.0</td><td>) per anot e measur</td><td>her 10 ed at 1</td><td>00 µ F for Z</td><td>Z-40℃/Z</td><td>+20°C</td></conditio<>	e, tan δ , and n >	d impedar	Add 1.0) per anot e measur	her 10 ed at 1	00 µ F for Z	Z-40℃/Z	+20°C
		Capacitance Conditio According 105°C ±2	e, tan ^δ , and n> to IEC6038 with DC bi	d impedar 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the r) per anot e measur ls, The ca rated ripp	her 10 ed at 1 pacito le curr	00 µ F for Z 20Hz. r is stored at ent for Tab	L-40°C/Z t a tempe le 1. (Th	+20°C erature he sum
		Capacitance Conditio According 105°C ±2 DC and ri	e, tan δ , and n> to IEC6038 with DC bi pple peak	d impedar 34-4No.4. as voltage voltage sł	Add 1.0 nce shall b 13 method e plus the mall not ex) per anot e measur ls, The ca rated ripp kceed the	her 10 ed at 1 pacito le curr e rated	00 µ F for Z 20Hz. r is stored at ent for Tab working v	t a tempe le 1. (Th oltage)	+20°C erature he sum Γhen t
		Capacitance Conditio According 105°C ±2 DC and ri product sho	e, tan δ , and n> to IEC6038 with DC bi pple peak ould be test	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not e: 6 hours red) per anot e measur ls, The ca rated ripp kceed the	her 10 ed at 1 pacito le curr e rated	00 µ F for Z 20Hz. r is stored at ent for Tab	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
	Load	Capacitance <conditio According 105°C ±2 DC and ri product show result show</conditio 	e, tan δ, and n> to IEC6038 with DC bi pple peak ould be test ild meet the	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not e: 6 hours red) per anot e measur ls, The ca rated ripp kceed the	her 10 ed at 1 pacito le curr e rated	00 µ F for Z 20Hz. r is stored at ent for Tab working v	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product sho result shou <criteria< td=""><td>e, tan δ, and n> to IEC6038 with DC bi pple peak ould be test ild meet the ></td><td>d impedar 34-4No.4. as voltage voltage sh ed after 16 following</td><td>Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours red g table:</td><td>) per anot e measur ls, The ca rated ripp kceed the covering</td><td>her 10 ed at 1 pacito le curr rated time at</td><td>00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri</td><td>t a tempe le 1. (Th oltage)</td><td>+20℃ erature ae sum Γhen t</td></criteria<></conditio 	e, tan δ , and n > to IEC6038 with DC bi pple peak ould be test ild meet the >	d impedar 34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours red g table:) per anot e measur ls, The ca rated ripp kceed the covering	her 10 ed at 1 pacito le curr rated time at	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
4.7		Capacitance <conditio According 105°C ±2 DC and ri product shou <criteria The charac</criteria </conditio 	e, tan δ , and m> to IEC6038 with DC bi pple peak ould be testo ild meet the > cteristic sha	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours red g table: e followin) per anot e measur ls, The ca rated ripp kceed the covering g require	her 10 ed at 1 pacito le curr e rated time at ments.	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charac Lea</criteria </conditio 	e, tan ^δ , and to IEC6038 with DC bi pple peak ould be test ild meet the cteristic sha kage curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the n nall not e: 5 hours red g table: <u>e followin</u> Value in) per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u>	her 10 ed at 1 pacito le curr e rated time at <u>ments.</u> be sati	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charace Lea Cap</criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak ould be test and meet the cteristic sha kage curren pacitance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>-</u>) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u>	her 10 ed at 1 pacito le curr rated time at ments. be sati initial	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage)	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product shou <criteria The charac Lea Cap tan</criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak y ould be test and meet the cteristic sha kage curren pacitance Ch δ	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the f nall not e: 6 hours red g table: e followin Value in Within <u>-</u> Not more	b) per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u>	her 10 ed at 1 pacito le curr e rated time at ments. be sati initial	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage) 7 c conditi d value.	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product shou <criteria The charac Lea Cap tan</criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak ould be test and meet the cteristic sha kage curren pacitance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the f nall not e: 6 hours red g table: e followin Value in Within <u>-</u> Not more	b) per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u>	her 10 ed at 1 pacito le curr e rated time at ments. be sati initial	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage) 7 c conditi d value.	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product shou <criteria The charac Lea Cap tan</criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak vould be test and the the cteristic sha kage current pacitance Ch bearance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 nce shall b 13 method e plus the f nall not e: 6 hours red g table: e followin Value in Within <u>-</u> Not more	b) per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u>	her 10 ed at 1 pacito le curr e rated time at ments. be sati initial	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri	t a tempe le 1. (Th oltage) 7 c conditi d value.	+20℃ erature ae sum Γhen t
4.7	life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charace Lea Cap tan App</criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak ould be test and meet the cteristic sha kage curren bacitance Ch δ bearance	d impedar 84-4No.4. as voltage voltage sh ed after 16 following Il meet th it nange	Add 1.0 nce shall b 13 method e plus the r nall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh	b) per anot e measur ls, The ca rated ripp acced the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u> <u>all be no</u>	her 10 ed at 1 pacito le curr rated time at ments. be sati initial <u>0% of</u> leakag	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri sfied value. the specified e of electrol	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte.	+20°C erature le sum Then t fons. T
4.7	life	Capacitance <conditio According $105^{\circ}C \pm 2$ DC and ri product show <criteria The charac Lea Cap tan App <conditio The capacito 1000+48/0</conditio </criteria </conditio 	e, tan δ , and to IEC6038 with DC bi pple peak v ould be test ild meet the cteristic sha kage curren bacitance CH δ bearance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u> tt nange stored wi lowing thi	Add 1.0 nce shall b 13 method e plus the mall not ex 6 hours red g table: <u>e followin</u> Value in Within <u>d</u> Not more There shall th no volta is period t	b) per anot e measur ls, The ca rated ripp cceed the covering the g require 4.3 shall 20% of e than 200 all be no	her 10 ed at 1 pacito le curr e rated time at <u>ments.</u> be sati initial 0% of t leakag ed at a tors sh	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri isfied value. the specified e of electrol temperature nall be remo	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 =	+20°C erature te sum Then t tons. T $= \frac{1}{2}$
4.7	life test	Capacitance <Conditio According $105^{\circ}C \pm 2$ DC and ri product show <Criteria The charace Lea Cap tan App <Conditio The capacito 1000+48/0 chamber at	e, tan δ , and to IEC6038 with DC bi pple peak v ould be test ild meet the cteristic sha kage curren bacitance Ch δ bearance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u> th nange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the n nall not ex 6 hours red g table: <u>e followin</u> Value in Within <u>d</u> Not more There sh th no volta is period t bilized at	b) per anot e measur ls, The ca rated ripp cceed the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 200</u> all be no nge applic he capach room ten	her 10 ed at 1 pacito le curr e rated time at <u>ments.</u> be sati initial 0% of t leakag ed at a tors sh peratu	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri isfied value. the specified e of electrol temperature nall be remo ure for 4~8	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 = wed fron hours. N	+20°C erature the sum Then t toons. T $\pm 2°C$ f in the to Vext th
	life test Shelf	Capacitance <Conditio According $105^{\circ}C \pm 2$ DC and ri product show <Criteria The charace Lea Cap tan App <Conditio The capacito 1000+48/0 chamber a shall be co	e, tan δ , and to IEC6038 with DC bi pple peak v ould be test ild meet the cteristic sha kage curren vacitance Ch bearance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th tt nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh th no volta is period t bilized at limiting re	b) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> e than 200 all be no all be no age applic he capaci room ten esistor(11	her 10 ed at 1 .pacito le curr e rated time at ments. be sati initial 0% of leakag ed at a tors sh mperatu ± 100	00 μ F for Z 20Hz. r is stored at ent for Tab working v atmospheri sfied value. the specified e of electrol temperature nall be remo ure for 4~8 Ω) with D	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 - wed from hours. N c. rated	+20°C erature le sum Then t tons. T $\pm 2°C f$ in the te Vext th I volta
4.7	life test Shelf life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charac Lea Cap tan App <condition The capacitor 1000+48/0 chamber at shall be co applied for</condition </criteria </conditio 	e, tan δ , and to IEC6038 with DC bipple peak γ ould be test and the the ceteristic shat kage current pacitance Ch bearance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th tt nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh th no volta is period t bilized at limiting re	b) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> e than 200 all be no all be no age applic he capaci room ten esistor(11	her 10 ed at 1 .pacito le curr e rated time at ments. be sati initial 0% of leakag ed at a tors sh mperatu ± 100	00 µ F for Z 20Hz. r is stored at ent for Tab working v atmospheri isfied value. the specified e of electrol temperature nall be remo ure for 4~8	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 - wed from hours. N c. rated	+20°C erature le sum Then t tons. T $\pm 2°C f$ in the te Vext th I volta
	life test Shelf	Capacitance <Conditio According $105^{\circ}C \pm 2$ DC and ri product show <Criteria The charace Lea Cap tan App <Conditio The capacito 1000+48/0 chamber a shall be co	e, tan δ , and to IEC6038 with DC bipple peak γ ould be test and the the ceteristic shat kage current pacitance Ch bearance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th tt nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh th no volta is period t bilized at limiting re	b) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> e than 200 all be no all be no age applic he capaci room ten esistor(11	her 10 ed at 1 .pacito le curr e rated time at ments. be sati initial 0% of leakag ed at a tors sh mperatu ± 100	00 μ F for Z 20Hz. r is stored at ent for Tab working v atmospheri sfied value. the specified e of electrol temperature nall be remo ure for 4~8 Ω) with D	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 - wed from hours. N c. rated	+20°C erature le sum Then t tons. T $\pm 2°C f$ in the te Vext th I volta
	life test Shelf life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charac Lea Cap tan App <condition The capacitor 1000+48/0 chamber at shall be co applied for</condition </criteria </conditio 	e, tan δ , and to IEC6038 with DC bipple peak γ ould be test and the the ceteristic shat kage current pacitance Ch bearance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th tt nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh th no volta is period t bilized at limiting re	b) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> e than 200 all be no all be no age applic he capaci room ten esistor(11	her 10 ed at 1 .pacito le curr e rated time at ments. be sati initial 0% of leakag ed at a tors sh mperatu ± 100	00 μ F for Z 20Hz. r is stored at ent for Tab working v atmospheri sfied value. the specified e of electrol temperature nall be remo ure for 4~8 Ω) with D	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 - wed from hours. N c. rated	+20°C erature le sum Then t tons. T $\pm 2°C f$ in the te Vext th I volta
	life test Shelf life	Capacitance <conditio According 105°C ±2 DC and ri product show <criteria The charac Lea Cap tan App <condition The capacitor 1000+48/0 chamber at shall be co applied for</condition </criteria </conditio 	e, tan δ , and to IEC6038 with DC bipple peak γ ould be test and the the ceteristic shat kage current pacitance Ch bearance	d impedar 34-4No.4. as voltage sh ed after 16 following 11 meet th tt nange stored wi lowing thi ved to stal a series	Add 1.0 nce shall b 13 method e plus the r hall not e: 6 hours red g table: e followin Value in Within <u>d</u> Not more There sh th no volta is period t bilized at limiting re	b) per anot e measur ls, The ca rated ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> e than 200 all be no all be no age applic he capaci room ten esistor(11	her 10 ed at 1 .pacito le curr e rated time at ments. be sati initial 0% of leakag ed at a tors sh mperatu ± 100	00 μ F for Z 20Hz. r is stored at ent for Tab working v atmospheri sfied value. the specified e of electrol temperature nall be remo ure for 4~8 Ω) with D	t a tempe le 1. (Th oltage) 7 c conditi d value. lyte. e of 105 - wed from hours. N c. rated	+20°C erature le sum Then t tons. T $\pm 2°C f$ in the te Vext th I volta

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet the	
		Leakage current	Value in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			ored more than 1 year, the leakage current may
			hrough about 1 k Ω resistor, if necessary.
		<condition></condition>	
			capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor
			d to 1000 cycles, each consisting of charge of 30 ± 5 s
		followed discharge of 5 min 30	
		The test temperature shall be	
		C _R :Nominal Capacitance (µ I	F)
	Surge	<criteria></criteria>	Not more than the aposition value
4.9	test		Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
			at abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency rang Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter gree in place with a bracket. 4mm or less	ge : 10Hz ~ 55Hz : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute eater than 12.5mm or longer than 25mm must be fixed Within 30°
		Appearance of	To be soldered ms shall be tested: o intermittent contacts, open or short circuiting. o damage of tab terminals or electrodes. o mechanical damage in terminal. No leakage electrolyte or swelling of the case. e markings shall be legible.

		D	_
Version	01	Page	8
V CI SION	01		0
		0	

r-

		<condition> The capacitor shall be tested up</condition>	nder the following	conditions:	
		Soldering temperature	: 245±3°C		
		Dipping depth	: 2mm	,	
4.11	Solderability test	Dipping speed	: 25±2.5mm : 3±0.5s	n/s	
	test	Dipping time < Criteria >	. 5±0.58		
			A minimur	n of 95% of the surface	being
		Coating quality	immersed		
		<condition></condition>	11 h . :		5°Cf==10
		Terminals of the capacitor shall			
		1 seconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0}			
	D	Then the capacitor shall be left for 1~2 hours before measuren		temperature and norma	l humidity
4.12	Resistance to solder heat	< <u>Criteria></u>	iciit.		
7.12	test	Leakage current	Not more than t	he specified value.	
		Capacitance Change	Within $\pm 10\%$ c	of initial value.	
		tan δ	Not more than t	he specified value.	
		Appearance	There shall be n	o leakage of electrolyte	e.
		<condition></condition>			
		Temperature Cycle:According			shall be
		placed in an oven, the conditio	-	Time	
		Temper (1)+20℃	lature	≤ 3 Minutes	
		(1)+20 C (2)Rated low temperature	$(40^{\circ}C)(25^{\circ}C)$	30 ± 2 Minutes	
	Change of			30 ± 2 Minutes 30 ± 2 Minutes	
4.13	temperature test	(3)Rated high temperature (1) to (2)=1 cucle, total 5		30 ± 2 Willines	
	test	(1) to (3)=1 cycle, total 5 (Criteria >	cycle		
		The characteristic shall meet th	e following require	ement	
			Not more than the s]
		tan δ	Not more than the s	specified value.	
		Appearance	There shall be no le	eakage of electrolyte.]
		<condition></condition> Humidity Test:			
		According to IEC60384-4No.4	12 methods capa	citor shall be exposed f	for 500 ± 8
		hours in an atmosphere of 90~	· 1	-	
		meet the following requirement		,	U
		<criteria></criteria>			I
4.14	Damp heat		more than the spe		
	test	1 0	$\frac{1}{20\%}$ of initiation $\frac{1}{20\%}$	al value. of the specified value.	
			re shall be no leak	•	
					l

Version	01	Page	9

4.15	Vent test	<condition> The following test only apply to those products with vent products at diameter $\ge \emptyset 6.3$ with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied. <table 3=""> $\overline{\text{Diameter (mm) DC Current (A)}}$ 22.4 or less 1 $\overline{\text{Over } 22.4}$ 10 Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</table></condition>
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: <u>Coefficient</u> <u>Freq.</u> <u>120</u> <u>300</u> <u>1K</u> <u>100k</u> <u>100k</u>

Version 01 Page 10	Version	
--------------------	---------	--

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	pounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo con	npounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	ber			
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzoti	riazole			

Version 01		Page	11
------------	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
- Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At human temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanb increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte of gas is ingested by month, gargie with water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.